巭醉影视4月25日,由中国科技产业智库「甲子光年」主办、上海市信息服务业行业协会支持的「共赴山海·2023甲子引力X智能新世代」峰会在上海召开。甲子光年创始人兼CEO张一甲发布了甲子光年智库趋势报告《「奇点已来,共赴山海」2023智能新世代——1个锚点与40个判别式》,总结了科技发展的三大定律,并在业界率先提出了“信能比”概念,推出了“甲子光年星空坐标系”,以及基于坐标系所推导出的40个科技产业新风向判别式。
屏幕上是过去一年我们经历的高频词,里面有喜有忧、纷纷扰扰,但可以明确洞悉出:这个世界正在进入技术爆发的新一轮寒武纪时代。自2022年底ChatGPT发布之后,人工智能新一轮浪潮汹涌而来,科技行业的“时间感”突然加快。最近很多老朋友打招呼,都是“嗨,好久不见,恍如隔世”。
我们先把视角从人工智能放大到整个前沿科技,看一看世界发生了什么。中国科学院2022年评选出“世界十大科技进展”和“中国十大科技进展”,我们发现了一个有意思的现象:
“世界十大科技进展”主要集中在生命科学、航天、数字技术的突破上,而“中国十大科技进展”主要聚焦于新能源、航天等领域。前十大进展不能代表整体统计分布,但依然能够看出我们的相对强项和短板,以及过去一年的得与失。
首先,我们当之无愧的“得”是新能源。过去一年,中国在新能源领域横向对比其他产业可谓一枝独秀。
· 新能源汽车:销售量快速上升,预计2025年年销量将超过千万。现在中国已成为全球最大的新能源汽车生产与消费市场,未来大概率会持续引领全球新能源汽车的发展。最近的上海车展,人气最旺的是新能源车的展位,比如比亚迪的“仰望”。大量消费者已经完成了认知的转变。
· 新能源充电桩:2022年中国车桩比已经降低到2.7:1,现在大家买新能源车越来越不需要担心充电桩问题。
· 氢能产业:根据《氢能产业发展中长期规划(2021-2035)》,2025年中国氢能产业市场规模将达到1000亿元,2030年将超过3000亿元。
· 虚拟电厂:去年是储能商业化应用元年。其中,虚拟电厂的市场规模在快速扩张,2025年将超过1300亿元。
相较于中国新能源的突飞猛进,人工智能行业就不那么乐观。最近AI行业从表象来看很活跃,但长期以来,行业其实是在负重前行。去年年底ChatGPT发布后,中国人工智能行业从业者的第一波情绪,是在兴奋中夹杂着很多不甘和沮丧:为什么ChatGPT没有诞生于中国?
· 从全球每年被引用量排前100的论文的国家分布来看,美国全球领先,中国不到美国一半;
· 2020-2022年,从全球每年被引用数量前100篇论文的机构分布(企业、高校、院所等)情况来看,前10位均为美国企业或机构,前15名里中国只有清华大学在列,排第11。
·从人才来源国(注:按本科毕业所在国计算)看,全球顶尖Top0.5%的AI人才来源国,美国占35%,中国占10%;从顶尖AI人才的工作地点看,美国占65%,中国占比几乎是0%——以上对比说明:在中国大学本科毕业的AI人才数量其实并不算少,但他们大学毕业之后去哪了?中国顶尖AI人才的流失是比较严重的。美国AI人才的来源里,超过四分之一来自中国,中国是AI人才的输出国。
· 此时此刻国内AI公司对国际AI人才的吸引力是不够的,中国AI企业的人才93.5%都来自中国内生市场。
今天的巅峰论坛本原本王小川答应来,但他临时决定飞美国,王慧文也在飞美国,大家去干嘛?抢人是个核心动作。顶级研究不足和人才流失问题已经成为制约中国人工智能产业发展的短板。
虽然有得有失,但2023年的春天可谓万象更新。从宏观数据看,高科技投资非常强劲;从经济发展主线看,人工智能经济成为今年春天最强看点,业界动态几乎以小时为单位更新;从出海看,核心产业正在重启出海之路。过去三年很多出海企业被迫按下急刹车,今年重新启动出海时已经脱胎换骨,一边升级、一边出海……综合以上种种,今年的春天是布满向上生长欲望的春天。
今天的主题是奇点已来,共赴山海。为什么是奇点?又是怎样的山海?我将在今天的大报告中逐渐展开。
在进入具体分析之前,我想首先表达,中国科技产业亟待一场思维重塑与方法论构建。
这一波AI浪潮的降临,给很多人带来了认知层面的刷新——当它真正降临的时候,我们才惶然发现它原来并没有那么复杂,只是被极为不同的思维方式和坚强理念推动着来到我们面前。当它降临,第一个冲击是思维的重塑。
这幅PPT的背景来自科幻电影《降临》,给我个人带来了非常大的启发,刷新了我对因果论和时间序列的认知。正如影片所讲:
2.2 以因为果VS以果为因:“以凡人之身躯领悟天之意志”的信仰背后是深刻理性
ChatGPT之所以能到达今天的高度,是OpenAI坚持信仰的结果。一直以来,OpenAI都坚定地把LLM(大语言模型)看做通往AGI的必由之路。他们是先有目标,而后有了上下求索的通往目标之路。
过去七八年,他们大部分时间是在冷板凳上坐着,并且在持续不断地投入,直至过去几个月才真正站在了全世界的聚光灯下——这颇有“以凡人之身躯领悟天之意志”的决绝感。
在我看来,真正深刻的长期信仰一定不是凭空产生的,信仰是需要对问题有深刻认知才会产生。OpenAI看似疯狂,却不是无脑all-in。唯有相信AGI一定会发生的人,才做得出AGI,如果一开始不相信,不可能支撑这样大的投入、抵抗很多诱惑。长期信仰的背后一定是深刻的理性。
第一种是大航海,寻找新大陆。技术驱动,选择探索一个可能存在的未知新大陆。大航海要做好可能全军覆没的准备,但当临界点到来之后,可收获的商业价值天花板会非常高,参考图中阴影部分的面积。
第二种是填海造陆。需求驱动,循序渐进,填多少海,就造多少陆,其商业价值也会随着投入的增加而稳态增长,参考图中阴影部分的面积。
这与美元基金和人民币基金的两种思维方式很像,分别对应着技术驱动的理想主义和需求驱动的实用主义。两者没有高低之分,但我想表达的是,两种都应该有。
商业价值是用来积累的,商业模式是用来试错的。商业价值是商业模式的基础,商业模式是兑现商业价值的行径集合,商业模式围绕商业价值波动,但不会偏离,类似于经济学所讲的“价格围绕价值而波动”。伟大的公司往往是先有商业价值而后有商业模式,而不是相反。过去几年,我没有看过哪家先有模式后有价值的企业能够成功。
对于技术突破而言,模式永远是结果而非本因。在本该求因的阶段求果,可能就抓错了主要矛盾,错失了战略机遇。这其中典型的就是特斯拉和爱迪生的区别。特斯拉和爱迪生都是电力革命的奠基性人物,但前者更关注价值,后者更关注模式,一个技术是狂人,一个是科技商人。
我曾与一位创业者沟通,他吐槽中国SaaS行业的困境:“SaaS很难有落地的土壤,因为我们缺乏先行的科学方法论。”
西方百年前就已经有了泰勒的科学管理原理,后来又有德鲁克的管理学,一代又一代理论体系不断出现。而技术工具实质上是方法论落地封装的载体。如果没有方法论,只有工具和技术,后者就会变成无本之木。
方法论是工具落地前的铺垫,工具是方法论传承的载体。工具的本质,是将口耳相传的认知与工艺沉淀封装,而后成百上千倍地放大一个人的能力。从这个角度看,甲子光年智库就是在做方法论的,是通过“软实力”去赋能技术“硬实力”从业者。
人工智能一直存在路线之争。核心两大学派就是逻辑驱动的“理论洁癖”派和黑箱模式的“暴力美学”派。
暴力美学在最初被认为是“野路子”,是一部分人眼中离经叛道的“邋遢学科”。而到了今天,很多人开始赞叹这就是通往通用人工智能之路的最优解——这种思维转变的过程,其实是一场企业家精神对科学界的反哺。
大模型的暴力美学摆脱了数理逻辑的束缚,吸纳了生物学思想,它是进化论和“道法自然”的产物——从这个角度看,我们无疑正在经历一场关键的科学革命,它驱动科学界一场集体的范式迁移,这是由底层哲学观的变化牵引的。
这八个字被用来形容狙击手。当我们打猎时,需要像狙击手一样专注,朝对的方向心无旁骛地卧着、瞄准。狙击手并不知道兔子什么时候出来,但是当兔子出来的一瞬间,开枪射击将是本能反应。这个过程当中,有人说白白等了几个小时,但如果不等这几个小时,猎物出来的时候与你就没有关系了。今天很多站在聚光灯下的大模型创业者,倒回去几年都在冷板凳上默默前行。但不坐那些年的冷板凳,或许也担不起今天的聚光灯。
科技领域永远需要“鲶鱼”。ChatGPT与其说是一个热点,更应该被定位为拐点。所以,我不管这个高温天气能够持续多久,我都愿意为其添一把火。技术理想主义者们“不为彼岸只为海”,是因为这片海本身就包含了很多的惊喜。
每次甲子引力都会提出几十条科技产业判断,我们一直在思考,在众多科技产业分支中,存不存在基本的定律或者核心锚点?千行百业不同赛道风口背后的根目录和图谱是什么?各个机会风口、变量、需求之间的内生关系是什么?我们希望抓住基本定律与核心锚点,而不是去拼凑出来几十个判断。
科技是一个不断演变的世界,有人说:如果我不喜欢一种技术,我们应该抵制它。但科技的发展轨迹存在某种“不可逆性”,这来自科技进步的内生特征:技术是因人而生的,而人性诉求古来不变。人永远要更快、更强、更便宜、更便捷、更安全、更好、更美、更多……技术受需求的“自然选择”,更顺应人性的技术就更能得到市场,所以,技术一定会往满足人类需求的方向演进,这和生物进化非常类似。
言下之意是,如果一个技术本身更加符合人的需求,你不可能人为阻止它的涌现。你不做,我不做,全世界一定有人会做,而它一旦做出来,就一定会获得市场,从而归入科技发展的下一个轨道节点。所以,科技向好发展、迈向先进的趋势是不可逆的。
纵观文明演进史,四大工业革命的主题:工业革命、电力革命、信息革命、智能革命。前两个关于能源,后两个关于信息。驾驭信息、转化能源是人类文明前行的两大引擎,能源和信息是衡量人类科技进步的两把标尺,陪伴着我们从原始时代走到农业时代、工业时代、信息时代、数智时代。两个文明的竞争,比的就是哪个文明更擅长使用能源和信息。
· 更好的信息系统意味着更好的组织能力,更好的组织能力驱动能源开发利用效率的最大化。比如《三体》里“秦始皇”的人列计算机,其本质就是利用极强的信息调度效率,计算并预测太阳运行规律的目的。
· 没有能源供给,信息技术就是无本之木。最典型的就是大模型,没有电和算力,就不会有智能。
定律3:技术进步的本质是推动信息与能源转化,以生产工具改变物理世界,继而满足人的需求。
从钻木取火的能源获取,到结绳记事的信息传递,从砍柴生火的生物能使用,到文字的信息承载与传输,从煤炭燃烧的蒸汽时代,到无线电的远距离信息传递,从石油天然气的化石能源,到互联网的信息交互……如DNA双螺旋般,信息与能源相互交叉、相互推动、彼此转化,共同螺旋上演推动文明发展的戏码。
不同的能源阶段经历了不同的转化形态,不同的信息阶段也有不同的传递载体,二者叠加在一起,构成了每个时代的主流生产工具,它们作用于世界,在迭代中满足一代又一代人不断进阶的需求。
基于三大定律,我们可以推演出技术进步的谱系。技术进步谱系主要分为信息和能源两大根目录,接着,信息可以发展出三个谱系:一是数字基础设施;二是数据要素;三是人工智能。能源可以发展出两个谱系:一是用物理方法转化能源,对应新材料、新能源;二是用生命过程转化能源,对应生命科技。
能源与信息是人类科技进步的两把标尺,而这两把标尺可能都在我们这一代人身上走向奇点。谈信息,我们见证了通用人工智能的诞生,谈能源,我们正处于新能源浪潮,未来还可能见证可控核聚变,也就是人造太阳。根据甲子光年智库测算,持续到本世纪中叶时,新能源和数据智能对经济发展的贡献比例均超过80%。
因此,今天我们第一次把“奇点”这个词放进我们的会议主题,因为数智化与新能源的结合才是推动时代发展的奇点。在不远的未来,社会将进入信息无限繁荣和能源无限供给的时代,而这一切都有可能发生在我们一代人身上。
奇点已来,共赴山海,这八个字的大会主题也是对这种心情的表达。说到这里,不得不感慨一句:有生之年,何其有幸。
为什么信息直接对应文明水平?毫不夸张地讲,没有对信息的驾驭,人就不能称之为人。
智人在与其他人种竞争中胜出的根本原因在于,智人率先在语言和信息交流上实现突破,建立了新的思维和沟通方式,形成了一种超凡的“信息认知”和“信息驾驭”能力。回顾历次信息技术里程碑节点,人类不仅创造了信息,也被信息所改变。
推导2:人类社会信息驾驭水平=单位能量所能转化的信息使用能力X能源利用水平
目前,虽然有了新能源,但能源利用水平并不是指数级的飞跃,而是缓步提升。在这种情况下,能否快速提升“单位能源所能转化的信息使用能力”就变得非常关键。这个表述大家可能似曾相识,投射到一个微观领域,就是大家耳熟能详的摩尔定律——摩尔定律指集成电路上可以容纳的晶体管数目在大约每经过18个月到24个月便会增加一倍,这个翻倍对应的就是单位能耗传输处理存储信息的效率。
能源利用水平=能源总供给X能源利用效率。能源总供给量越高,能源利用效率越高,能源利用水平也将越高。
以上推导可以看出,提高信息驾驭水平的关键所在是能否提高单位能源所能转化的信息使用能力。这个比例,就是信息量与能量之比,代表单位时间内产生或使用的信息量除以单位时间内所消耗的能源量。
为了更精准地分析文明进步的标尺,我们定义了一个全新的概念,作为我们的锚点——【信能比】。
定义:信能比,反映单位能源所能驾驭的信息量。信能比通过单位时间内产生/传输/使用/存储的信息量除以单位时间内所消耗的能源量计算得出,反映单位能源所能调用的信息量水平的高低。
计算示例:以第一代PC机为例,CPU每秒运算500万次,32位处理器每次处理4字节,则每小时处理信息量为10.06GB;其每小时耗电量约70瓦,因此其信能比=10.06/0.07=143.7GB/KW
信能比可以体现数据智能技术的先进性和能源效率的高效性:它能够反映整个社会数字化、智能化水平的高低;它能体现能源体系的可持续发展能力;它能反映生产力的高低和生产效率的提升;它能体现社会经济发展的先进性、创新性、可持续性。
路径1:假如短期能量利用水平没有质变,就要不断提高单位能量所能调用的信息量,这就要求数字技术必须不断发展。
路径2:假如迎来真正的能源革命,逼近无限能源时代,信息驾驭水平的重要性就会下降,因为在能源无限的情况下,单位能源所能支撑的信息量其实已经不影响大局。
因此,未来的看点取决于能源革命何时到来,能源革命之前,社会发展是路径1,能源革命之后,社会发展是路径2。
甲子光年智库核算了开启信息技术革命的第一台计算机ENIAC、作为互联网时代基础性产品的第一台PC、开启移动互联网的iPhone4和开启智能新世代的GPT-4的信能比,可以发现信能比与社会总体技术先进性正相关。
信能比的测算还可以体现生产力跃迁的节点,或者说可以让我们更直观的判断“iPhone时刻”何时到来。
甲子光年智库测算出了世界第一台通用电子计算机埃尼阿克(ENIAC)、第一代PC、智能手机代表性产品iPhone4,以及各AI大模型等代表性产品的信能比。我们发现了一个有意思的现象:
简言之,当信能比大于100时,会出现一次生产力的飞跃,当信能比大于300时,会出现第二次生产力的飞跃。
GPT的出现,让我们快速完成了两次AI大模型时代的生产力飞跃,让AI产业进入了“人工智能的iPhone时刻”——信能比给了这个时刻更量化的注解。
需要说明的是,因AI大模型尚处于行业起步阶段,目前我们的测算是基于训练过程所消耗能源与处理信息量进行对比核算,而不是基于使用场景,甲子光年团队会在后续报告里持续展开对信能比的测算和探讨。
GPT-1、GPT-2、BERT-Large、Megatron-Turing、新版BERT等信能比没有超过100,明显低于GPT-3,尚未完成AI领域的生产力跃迁,ChatGPT作为GPT-3的升级改进版,其信能比水平明显有提高,但信能比尚未超过300,还没达到实现生产力第二次跃迁的水平。GPT-4的出现首次代表AI领域实现技术跨越,其信能比也首次突破生产力第二次跃迁线 信能比反映数字化水平与能耗的相对关系
甲子光年智库进一步测算了企业数字化水平四个阶段的信能比,以及不同行业的信能比,可以就此分析企业的数字化水平、行业能耗与信能比的关系。当然,信能比是我们提出的全新概念,今天的测算可能还会存在一定程度的粗糙性,后期甲子光年智库团队会对信能比持续开展研究与细化,会在后续推出的一系列报告中去测算不同的时代、不同的模型下的不同的产品。
|